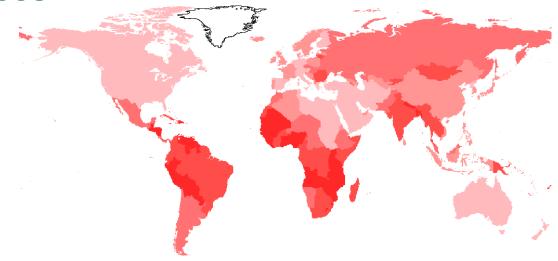
The Mystery of E7 protein

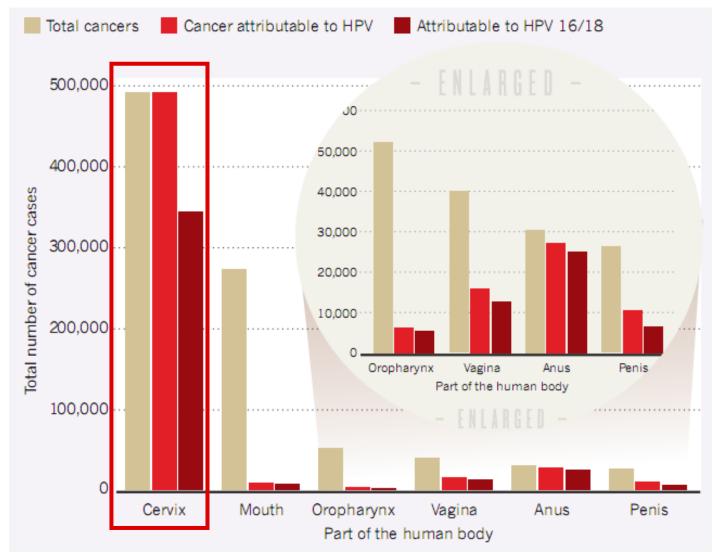
M.Phil Candidate: Grace Pui Yiu CHEUNG Supervisor: Professor Paul Kay Sheung CHAN Co-supervisor: Dr Martin Chi Wai CHAN

Joint Graduate Seminar Department of Microbiology Faculty of Medicine The Chinese University of Hong Kong Date: 3 rd December, 2013

Content

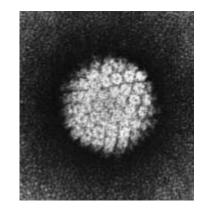

- Cervical cancer
- Cervical cancer and HPV
- HPV and E7
- Structure of E7
- Functions of different domains in E7

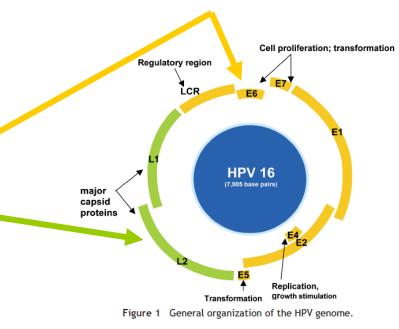
Cervical Cancer


- Third most common cancer in Women
- Incidence: 530,000 women in 2008
- Mortality:

Estimated age-standardised incidence rate per 100,000 Cervix uteri, all ages

- ^o 275, 000 death in 2008
- **52%**

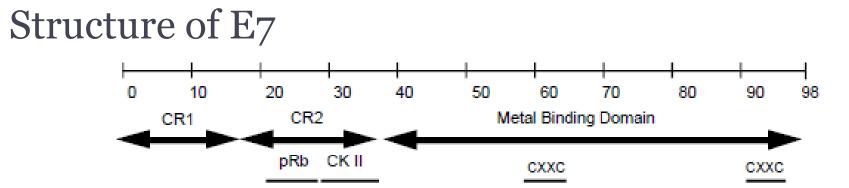

Association of cervical cancer and HPV



(Nature, 2012)

HPV and E7

- Human Papillomavirus (HPV)
- Genome
 - Early control region Late control region Long control region (LCR)
- Protein encoded: Early expressed proteins Late expressed proteins


HPV encoded proteins

Early expressed protein

produced after entry into host cell prior to DNA replication

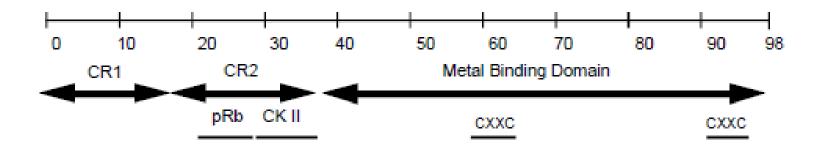

First oncogene of high-risk HPVs to be discovered

Table 3. Functions of papillomavirus proteins^a E1 Adenosine triphosphatase (ATPase) and DNA helicase; recognizes and binds to the viral origin of DNA replication as a hexameric complex; necessary for viral DNA replication. E2Main regulator of viral gene transcription; binds the viral transcriptional promoter as a dimer; involved in viral DNA replication; interacts with and recruits E1 to the origin. Acts late in the viral life cycle; interacts with the keratin cytoskeleton and E4 intermediate filaments; localizes to nuclear domain 10; induces G2 arrest; believed to facilitate virus assembly and release. Induces unscheduled cell proliferation; interacts with 16k subunit c of vacuolar E5 ATPase; may activate growth factor receptors and other protein kinases; inhibits apoptosis; inhibits traffic of major histocompatibility complexes to the cell surface. Induces DNA synthesis; induces telomerase; prevents cell differentiation; interacts E6 with four classes of cellular proteins: transcriptional co-activators, proteins involved in cell polarity and motility, tumour suppressors and inducers of apoptosis, primarily p53, and DNA replication and repair factors. E7 Induces unscheduled cell proliferation; interacts with histone acetyl transferases; interacts with negative regulators of the cell cycle and tumour suppressors, primarily p105Rb. L1Major viral structural protein; assembles in capsomeres and capsids; interacts with L2; interacts with cell receptor(s); encodes neutralizing epitopes. L2 Minor viral structural protein; interacts with DNA; interacts with nuclear domain 10s; believed to facilitate virion assembly; may interact with cell receptor(s); encodes linear virus neutralizing epitopes.

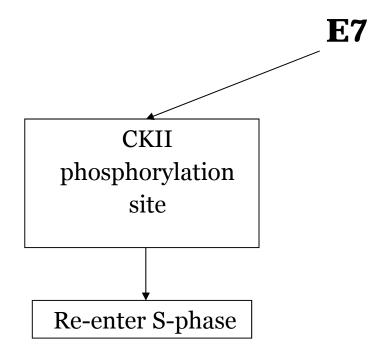
aa 1-15	aa 16-37	aa 38-98
CR1 Conserved region 1	CR2 Conserved region 2	Metal Binding Domain
	 pRB binding site CK II phosphorylation site 	Two CXXC motifs

Functions involved in each domain

CR1	CR2	Metal Binding Domain	
	CK II phosphorylation	Metal Binding (Zinc)	
	pRB binding		
	Disrupt pRB/E2F complex		
	Cdk inhibitor inactivation		
Transformation and Immortalization			

Role of E7 to HPV itself

- HPV infect undifferentiated basal cells.
 - Proliferation: use host cell's DNA synthesis machinery for viral genome replication
- Differentiating cells:
 - Late viral capsid protein expression
 - Virus assembly
- Shed epithelial squames:
 - Virus particles release

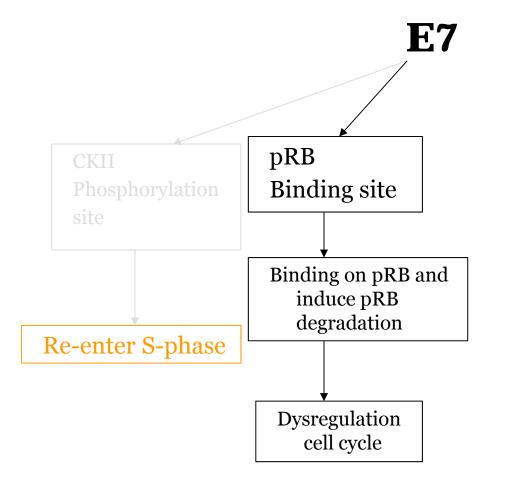

Role of E7 to HPV itself

- E7:
 - Subvert the tight link between proliferation and differentiation
 - Retain differentiating keratinocyte in a DNA-replication competent state
 - Give a high copy number viral genome amplification during differentiation

CR2: CKII Phosphorylation site

- Caesin kinase 2 (CK II)
 - Serine/threonine-selective protein kinase
- When E7 phosphorylated by CKII,
 - [•] S32 & S34
 - Activation of certain S-phase genes
 - Promote S-phase re-entry in differentiated keratinocyte
- Also, induce PCNA (Proliferating Cell Nuclear Antigen), which is a factor holding DNA polymerase ε to DNA

Short Summary


CR2: pRB binding site

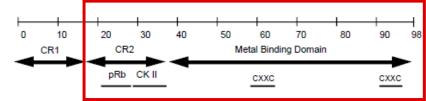
- Retinoblastoma protein (pRB)
 - Tumor suppressor protein
 - Regulating cell cycle progression
 - Preventing damaged DNA replication

CR2: pRB binding site

- Core motif XLXCXE for pRB binding
- High-risk E7 VS Low-risk E7
 - Difference in binding affinity
 - Type 16-E7 [DLYCYE]
 - Type 6-E7 [GLHCYE]
- 16E7 bind to pRB
 - Target on S4 subunit of 26S proteasome
 - pRB degradation

Short Summary

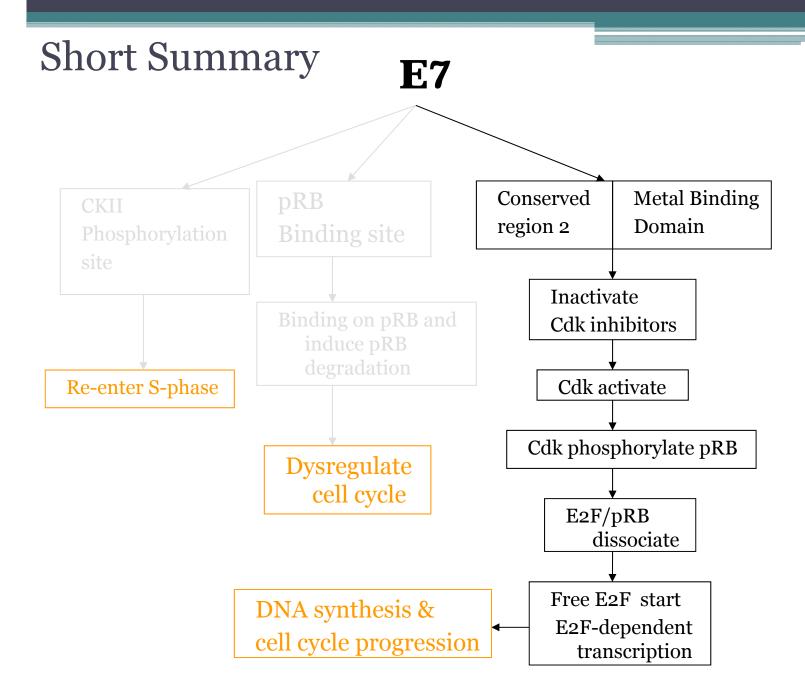
E2F/pRB complex dissociation


- What is E2F?
 - Family of transcriptional activator
 - Target genes: DNA synthesis, cell cycle progression
 - Important role in control of cell proliferation: Drive cell cycle (G1/S) progression
- Regulation of E2F
 - Association of pRB and pocket protein family (p107, p130) → inhibit E2F-dependent transcription

E2F/pRB complex dissociation

- In quiescent or differentiating cells
 - Majority of E2F bind to pRB-family proteins
- When cells entered S-phase
 - pRB phosphorylated
 - E2F/pRB dissociated
 - E2F is in free form
 - Activate E2f-dependent transcription
- In presence of E7 in differentiating cells...

E2F/pRB complex dissociation


- In presence of E7 in differentiating cells...
 - From experiments

 Both CR2 & metal binding domain are required for dissociation of E2F/pRB complex through inactivation of cdk inhibitors

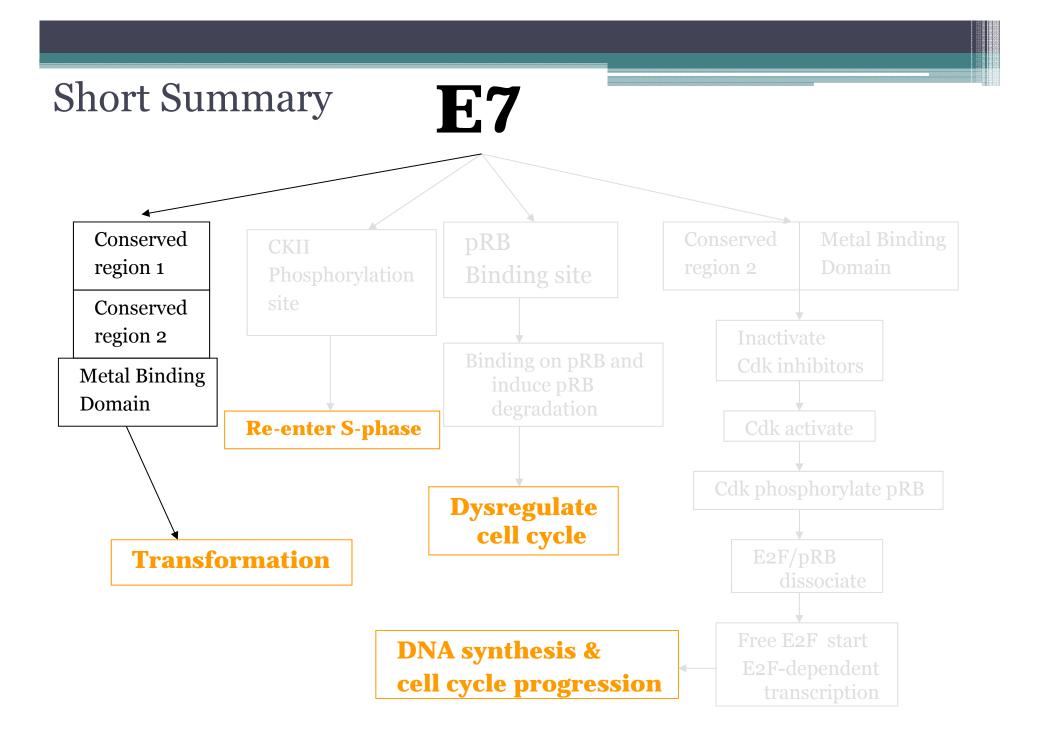
Inactivate Cdk inhibitors

- Cdk: cyclin-dependent kinase
 - Serine/threonine-selective protein kinase
 - Inhibitors (e.g. p21cip1) regulate cdk activities and mediate inhibitory signals of cellular growth
- E7 interact with p21cip1 and abrogate the inhibition of cdk → cdk activate → phosphorylate pRB → E2F/pRB complex dissociate → free E2F to start E2F-dependent transcription

Transformation

- Both CR1,
- aa 6-10
 - Deletion cause substantial loss of transformation

CR2,


CKII
 phosphorylation
 site

 Mutations reduce transformation

Metal Binding Domain

- Integrity of CXXC motifs
 - important for transformation

are important for **Tranformation**.

Conclusion

- E7 control the cellular environment in a favorable way for viral replication in differentiating cells
 - pRB binding and degradation
 - Dissociate E2F/pRB complex, free E2F for gene transcription
 - Inactivate Cdk inhibitor
 - CKII phosphorylation
- Leading to Cell Transformation

The End

Thank you